Linki

Linki z prezentacji na konferencji: „Medyczne aspekty genetyki i chorób współistniejących w autyzmie”, 2021.

  1. Giulivi, et al., Mitochondrial Dysfunction in Autism. Journal of the American Medical Association. 2010;304:2389-2396.
  2. Napoli E, I inni, Deficits in bioenergetics and impaired immune response in granulocytes from children with autism. Pediatrics. 2014 May; 133(5):e1405-10.
  3. Rossignol DA, Frye RE, Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis. Mol Psychiatry. 2012 Mar; 17(3):290-314.
  4. Frye RE. Biomarkers of abnormal energy metabolism in children with autism spectrum disorder. N. Am J Med Sci. 2012;5:141–7. doi: 10.7156/v5i3p141.
  5. Chauhan, et al., Brain region-specific deficit in mitochondrial electron transport chain complexes in children with autism. Journal of Neurochemistry 2011;117:209-22.
  6. Tang, et al., Mitochondrial abnormalities in temporal lobe of autistic brain. Neurobiology of Disease 2013;54:349-361.
  7. Goh, et al. Mitochondrial Dysfunction as a Neurobiological Subtype of Autism Spectrum Disorder: Evidence from brain imaging. JAMA Psychiatry 2014; 71:665-671.
  8. Napoli, et al., Deficits in bioenergetics and impaired immune response in granulocytes from children with autism. Pediatrics 2014;133:e1405-10.
  9. Michael J. Goldenthal, Et Al. Molecular Genetics and Metabolism 105 (2012) 457–462
  10. Rose, et al., Oxidative stress induces mitochondrial dysfunction in a subset of autism lymphoblastoid cell lines in a well-matched case control cohort. PLOS One 2014;9:e85436.
  11. Rossignol DA, Frye RE, Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis. Mol Psychiatry. 2012 Mar; 17(3):290-314.
  12. Napoli E, Wong S, Hertz-Picciotto I, Giulivi C, Deficits in bioenergetics and impaired immune response in granulocytes from children with autism. Pediatrics. 2014 May; 133(5):e1405-10.
  13. Rossignol DA, Frye RE, Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis. Mol Psychiatry. 2012 Mar; 17(3):290-314.
  14. Haas RH, Autism and mitochondrial disease. Dev Disabil Res Rev. 2010; 16(2):144-53.
  15. E.Wesselink, Feeding mitochondria: Potential role of nutritional components to improve critical illness convalescence, Clinical Nutrition, Volume 38, Issue 3, June 2019, Pages 982-995
  16. https://www.corticacare.com/care-notes/symptoms-of-mitochondrial-dysfunction

 

Linki z prezentacji na konferencji: „Medyczne aspekty genetyki i chorób współistniejących w autyzmie”, 2020.

  1. https://pubmed.ncbi.nlm.nih.gov/27491814/
  2. https://www.researchgate.net/publication/280568142_Autism_Spectrum_Disorder_ASD_and_the_Autonomic_Nervous_System
  3. https://www.naturoterapiawpraktyce.pl/artykul/teoria-poliwagalna-w-praktyce
  4. https://nemos.t-vns.com/en/epilepsy/
  5. https://doi.org/10.1016/j.jocn.2019.01.042
  6. https://pubmed.ncbi.nlm.nih.gov/20515333/
  7. https://pubmed.ncbi.nlm.nih.gov/12791330/
  8. https://pubmed.ncbi.nlm.nih.gov/25922052/
  9. https://pubmed.ncbi.nlm.nih.gov/12609211/
  10. https://www.jocn-journal.com/article/S0967-5868(18)32208-2/pdf
  11. https://www.researchgate.net/publication/278715042_Vagal_Nerve_Stimulation_for_the_Treatment_of_Autism
  12. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5496407/
  13. https://autismawarenesscentre.com/three-main-causes-early-death-autism/
  14. https://onlinelibrary.wiley.com/doi/full/10.1111/epi.14440
  15. https://www.sciencedirect.com/science/article/abs/pii/S1525505003000805
  16. https://thejns.org/pediatrics/view/journals/j-neurosurg-pediatr/5/6/article-p595.xml
  17. https://www.freepatentsonline.com/y2020/0054872.html
  18. https://www.sciencedirect.com/science/article/abs/pii/S1525505017309861
  19. https://pubmed.ncbi.nlm.nih.gov/20515333/
  20. https://pubmed.ncbi.nlm.nih.gov/25922052/
  21. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5496407/
  22. https://pubmed.ncbi.nlm.nih.gov/12791330/
  23. https://www.sciencedirect.com/science/article/abs/pii/S0967586820315010
  24. https://www.sciencedirect.com/science/article/pii/S2666497620300126
  25. https://www.tandfonline.com/doi/abs/10.1080/03009742.2020.1764617
  26. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5499939/
  27. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4716744/
  28. https://www.frontiersin.org/articles/10.3389/fpsyt.2018.00044/full
  29. https://pubmed.ncbi.nlm.nih.gov/30641105/
  30. https://www.nature.com/articles/nn0199_94

Linki z prezentacji na konferencji MITO 2019.

  1. Karnozyna: http://www.advances.umed.wroc.pl/en/article/2013/22/5/739/?fbclid=IwAR2pph0FONMpBU0WXpSEzBZfHHvhlDgz8t1zsMjocfpngV1dgrsQz164N-A
  2. Procent dzieci z dysfunkcjami mitochondrialnymi: https://rossignolmedicalcenter.com/wp-content/uploads/2017/10/Mitochondrial-Dysfunction-ASD.pdf
  3. Zaburzenia autonomicznego układu nerwowego: http://www.najms.com/index.php/najms/article/view/321/249
  4. PubMed i HRV: https://www.ncbi.nlm.nih.gov/pubmed/?term=hrv
  5. Objawy dysfunkcji mitochondrialnych: Lee Know, Mitochondria and the future of medicine.
  6. Ochrona przed powikłaniami po znieczuleniu: https://www.ncbi.nlm.nih.gov/pubmed/21153702
  7. Neuroprotekcyjne działanie karnozyny: https://www.ncbi.nlm.nih.gov/pubmed/18629638, https://phmd.pl/api/files/view/544306.pdf
  8. Karnozyna a autyzm: www.autismcoach.com
  9. Epilepsja i EEG: http://www.enzymestuff.com/rtcarnosine.htm
  10. Chroni przed zniszczeniami komórek spowodowanymi wolnymi rodnikami: https://www.ncbi.nlm.nih.gov/pubmed/23442334
  11. Poprawa funkcji mitochondrialnych: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0017971
  12. Może poprawić stan jelita: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1856764/, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1856764/
  13. Jelita: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1856764/
  14. Neuroprotekcja: https://www.ncbi.nlm.nih.gov/pubmed/9464638, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2805719/,
  15. Ochrona po narkozie: https://www.ncbi.nlm.nih.gov/pubmed/21153702, https://www.ncbi.nlm.nih.gov/pubmed/18629638
  16. Poprawa pamięci: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4661275/, https://www.ncbi.nlm.nih.gov/pubmed/26682691, https://www.ncbi.nlm.nih.gov/pubmed/20586644
  17. Antydepresyjne działanie: https://www.sciencedirect.com/science/article/pii/S0091305708000683
  18. Przeciwzapalne działanie i układ odpornościowy: https://www.ncbi.nlm.nih.gov/pubmed/19540429, https://www.ncbi.nlm.nih.gov/pubmed/26885252,
  19. Cukrzyca: https://www.ncbi.nlm.nih.gov/pubmed/8187813, https://www.ncbi.nlm.nih.gov/pubmed/27040154, https://www.ncbi.nlm.nih.gov/pubmed/17316626
  20. Wzmocnienie układu nerwowego: https://www.ncbi.nlm.nih.gov/pubmed/22367578
  21. Gojenie się ran: https://www.ncbi.nlm.nih.gov/pubmed/22451275
  22. Poprawa krążenia: https://www.ncbi.nlm.nih.gov/pubmed/17610873
  23. Chelatowanie metali ciężkich: https://www.ncbi.nlm.nih.gov/pubmed/10951097, https://www.ncbi.nlm.nih.gov/pubmed/10951099
  24. Poprawa wydolności fizycznej: https://www.mdpi.com/2072-6643/2/1/75/htm
  25. Przeciwepileptyczne działanie: https://www.ncbi.nlm.nih.gov/pubmed/16515835, https://www.ncbi.nlm.nih.gov/pubmed/17919801,
  26. Wątroba: https://www.ncbi.nlm.nih.gov/pubmed/18222027, https://www.ncbi.nlm.nih.gov/pubmed/22661399
  27. TNF-a, il1: https://www.ncbi.nlm.nih.gov/pubmed/27094155
  28. Atres oksydacyjny: https://www.ncbi.nlm.nih.gov/pubmed/27094155
  29. GABA, glutaminian: https://www.ncbi.nlm.nih.gov/pubmed/27040711
  30. Flavonoid: http://ptfarm.pl/pub/File/FP/5_2009/11%20%20flawonoidy.pdf